GED ${ }^{\circ}$ PROGRAM
 CALCULATOR
 REFERENCE GUIDE

Working with complex problems on the test is simple when you use this guide to understand what order to click the buttons in the on-screen calculator. The GED ${ }^{\circledR}$ test calculator is the TI-30XS.

BASIC ARITHMETIC

To perform basic arithmetic, enter numbers and operation symbols using the standard order of operations.

Example: $8 \times-4+7=$

The correct answer $=\mathbf{- 2 5}$

SCIENTIFIC NOTATION

To perform calculations with scientific notation, use the key.

Example: $7.8 \times 10^{8}-1.5 \times 10^{8}=$

The correct answer $=\mathbf{6 3 0 0 0 0 0 0 0}$

MIXED NUMBERS

To perform calculations with mixed numbers, use 2 2nd
As with fractions, the answer will automatically be formatted in reduced form.
Example: $12 \frac{5}{6}-1 \frac{1}{2}=$

The correct answer $=\frac{34}{3}$

FRACTIONS

To perform calculations with fractions, use the key. The answer will automatically be formatted in reduced form.

Example: $\frac{2}{9} \times \frac{3}{7}=$

The correct answer $=\frac{\mathbf{2}}{\mathbf{2 1}}$

PERCENTAGES

To calculate with percentages, enter the number, then (ind

Example: $40 \% \times 560=$

The correct answer $=\mathbf{2 2 4}$

POWERS AND ROOTS

To perform calculations with powers and roots, you will use the following keys:

Example: $1.2^{2}=$

The correct answer $=1.44$
Example: $7^{4}=$

The correct answer $=\mathbf{2 4 0 1}$
Example: $\sqrt{529}=$

Example: $\sqrt[3]{1728}=$

The correct answer = 12

TOGGLE KEY

The answer toggle key can be used to toggle the display result between fraction and decimal answers, exact square root and decimal, and exact pi and decimal.
Example: $\frac{9}{10}=$

The correct answer $=\mathbf{0 . 9}$

This calculator reference sheet is provided for most items on the GED ${ }^{\circledR}$ test - Mathematical Reasoning, as well as certain items on the Science and Social Studies tests.

Find everything you need to pass in MyGED ${ }^{\circledR}$ at GED.com.
\qquad

