From the Headlines!
Big Ideas in Science

Information, Resources, and Strategies for the Classroom

A Webinar from GED Testing Service®

Table of Contents

Circle of Inquiry...3
Overview of Science Themes and Example Content..5
Building on a Science Theme ..6
Thematic Plan: Superbugs Are Here!..7
Building on a Theme Lesson Planner ...10
Science Resources from the World Wide Web..11
Circle of Inquiry

Ask
- Draw out and work with students’ pre-existing understandings to make student “thinking” visible and central to the learning.

Investigate
- Students gain competence in their area of study by organizing factual knowledge around conceptual frameworks to facilitate knowledge retrieval and application.

Reflect
- Reflection activities help students take control of their learning by facilitating thinking about their learning (i.e., metacognition).

Create
- Students engage with research by discussing, debating, and presenting their findings to communicate their understanding and results.

Discuss
- An inquiry may seek to help students learn about existing knowledge, or it may challenge them to produce new knowledge.
<table>
<thead>
<tr>
<th>Phase</th>
<th>Purpose</th>
<th>Role of Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engage</td>
<td>Create interest and stimulate curiosity.</td>
<td>Activity or multi-modal text used to set context and establish topicality and relevance.</td>
</tr>
<tr>
<td></td>
<td>Set learning within a meaningful context.</td>
<td>Motivating/discrepant experience to create interest and raise questions.</td>
</tr>
<tr>
<td></td>
<td>Raise questions for inquiry.</td>
<td>Open questions, individual student writing, drawing, acting out understandings, and discussion to reveal students’ existing ideas and beliefs so that teachers are aware of current conceptions and can plan to extend and challenge as appropriate – a form of diagnostic assessment.</td>
</tr>
<tr>
<td></td>
<td>Reveal students’ ideas and beliefs, compare students’ ideas.</td>
<td></td>
</tr>
<tr>
<td>Explore</td>
<td>Provide experience of the phenomenon or concept.</td>
<td>Open investigations to experience the phenomenon, collect evidence through observation and measurement, test ideas and try to answer questions.</td>
</tr>
<tr>
<td></td>
<td>Explore and inquire into students’ questions and test their ideas.</td>
<td>Investigation of text-based materials (e.g. newspaper articles, web-based articles) with consideration given to aspects of critical literacy, including making judgments about the reliability of the sources or the scientific claims made in the texts.</td>
</tr>
<tr>
<td></td>
<td>Investigate and solve problems.</td>
<td></td>
</tr>
<tr>
<td>Explain</td>
<td>Introduce conceptual tools that can be used to interpret the evidence and construct explanations of the phenomenon. Construct multi-modal explanations and justify claims in terms of the evidence gathered. Compare explanations generated by different students/groups.</td>
<td>Student reading or teacher explanation to access concepts and terms that will be useful in interpreting evidence and explaining the phenomenon.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Small group discussion to generate explanations, compare ideas and relate evidence to explanations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Individual writing, drawing and mapping to clarify ideas and explanations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Formative assessment to provide feedback to teacher and students about development of investigation skills and conceptual understandings.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Small group writing/design to generate a communication product (e.g. poster, oral report, formal written report or PowerPoint presentation, cartoon strip, drama presentation, letter) with attention to form of argumentation, genre form/function and audience, and with integration of different modes for representing science ideas and findings.</td>
</tr>
<tr>
<td>Elaborate</td>
<td>Use and apply concepts and explanations in new contexts to test their general applicability. Reconstruct and extend explanations and understandings using and integrating different modes, such as written language, diagrammatic and graphic modes, and mathematics.</td>
<td>Further investigations, exercises, problems or design tasks to provide an opportunity to apply, clarify, extend and consolidate new conceptual understandings and skills.</td>
</tr>
<tr>
<td>(extend)</td>
<td></td>
<td>Further reading, individual and group writing may be used to introduce additional concepts and clarify meanings through writing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A communication product may be produced to re-represent ideas using and integrating diverse representational modes and genres consolidating and extending science understandings and literacy practices.</td>
</tr>
<tr>
<td>Evaluate</td>
<td>Provide an opportunity for students to review and reflect on their own learning and new understandings and skills. Provide evidence for changes to students’ understandings, beliefs and skills.</td>
<td>Discussion of open questions or writing and diagrammatic responses to open questions – may use same/similar questions to those used in Engage phase to generate additional evidence of the extent to which the learning outcomes have been achieved.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reflections on changes to explanations generated in Engage and Evaluation phases to help students be more metacognitively aware of their learning.</td>
</tr>
</tbody>
</table>
Overview of Science Themes and Example Content

<table>
<thead>
<tr>
<th>Focusing Themes</th>
<th>Life Science (40%)</th>
<th>Physical Science (40%)</th>
<th>Earth & Space Science (20%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Health and Living Systems</td>
<td>• Human body and health</td>
<td>• Chemical properties and reactions related to human systems</td>
<td>• Interactions between Earth’s systems and living things</td>
</tr>
<tr>
<td></td>
<td>• Organization of life</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Molecular basis for heredity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Evolution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy and Related Systems</td>
<td>• Relationships between life functions and energy intake</td>
<td>• Conservation, transformation, and flow of energy</td>
<td>• Earth and its system components</td>
</tr>
<tr>
<td></td>
<td>• Energy flows in ecologic networks (ecosystems)</td>
<td>• Work, motion, and forces</td>
<td>• Structure and organization of the cosmos</td>
</tr>
</tbody>
</table>

GED Testing Service® | www.GEDtestingservice.com
Infectious Diseases - Superbugs!

Life Science
Human body and health
- bacterial and viral infections
- antibiotics

Physical Science
Chemical properties and reactions related to human systems
- physical and chemical properties of antibiotics
- reaction of antibiotics to infectious diseases

Earth & Space Science
Interaction between Earth's systems and living things
- global challenge of infectious diseases
- effect of Earth's systems on bacteria and viruses
Thematic Plan: Superbugs Are Here!

Objectives
- Understand the similarities and differences between bacteria and viruses
- Understand antibiotic resistance and the increases in superbugs in today’s world
- Understand the interaction between Earth’s systems and infectious diseases
- Understand chemical properties and reactions related to bacterial and viral infections and antibiotics

Engagement
Show students a video on superbugs or a current article or real-world example of antibiotic resistance, such as: https://www.youtube.com/watch?v=Qa7sG6y

Ask students:
- Have you ever taken an antibiotic?
- How and when should antibiotics be used?
- Who was Alexander Fleming?
- What are bacteria?
- What have you heard about super-bugs?

Exploration
Have students explore how bacteria and viruses are different. The purpose of this stage is for students to frame questions regarding the differences between bacteria and viruses, as well as the effectiveness of antibiotics.

You may wish to have students watch videos or read articles and then have them answer questions or complete a Venn diagram where they identify the similarities and differences between bacteria and viruses, such as Bacteria and Viruses - http://ed.ted.com/on/q41jt6vp#finally

Questions to Explore
- What are bacteria?
- What are viruses? Is there a difference?
- What can we do to fight bacteria?
- How come sometimes medicine we take for infections don’t work?
- What is a superbug?

Explain
Have students explain basic concepts of antibiotics and bacterial and viral infections as part of today’s world. Provide students with non-fiction texts in order to build knowledge, as well as discussions and hands-on activities.

Sample Resources
- Biographies of Alexander Fleming
 http://www.bbc.co.uk/history/historic_figures/fleming_alexander.shtml
- Superbugs: A Silent Health Emergency
https://www.sciencenewsforstudents.org/article/superbugs-silent-health-emergency

- The War on Superbugs
 https://www.sciencenewsforstudents.org/article/war-superbugs
- Hands-on Activities through Interacting with Diseases
 http://sciencenetlinks.com/interactives/antibiotic.html
 http://www.pbs.org/wgbh/nova/body/disease-detective.html

Extend (Elaborate)

Show students how the topic of infectious diseases crosses the different areas of science. The following are beginning resources to extend learning.

Earth Science
RX for Survival
http://www.pbs.org/wgbh/rxforsurvival/index.html
Windows to the Universe - Changing Planet: Infectious Diseases

Physical Science (Chemistry)
Discuss that the world of chemistry is also a part of infectious diseases as scientists learn more about the chemical and physical properties of viruses vs. bacteria and the reaction of antibiotics in today’s changing world. Access photos of different types of viruses and bacteria and show how antibiotics are or are not effective and why.

You may also wish to integrate graphics and games in order to provide extension of the topic, such as: Superbugs (a downloadable game) - https://longitudeprize.org/superbugs

Debrief by having students share the importance that infectious diseases and antibiotics have on their daily lives.

Evaluate

Provide students with questions to evaluate their learning, such as:
- What are the differences between viruses and bacteria?
- Are all bacteria harmful? Explain.
- How does the overuse of antibiotics lead to resistant strains of bacteria?
- When you get a cold, should you take an antibiotic to help you get better? Why?
- What can you do in your life to reduce antibiotic resistance?

Have students research solutions to antibiotic resistance. Have them identify a solution and cite their sources for each piece of information. Discuss the need to use reputable sources based on scientific facts. The following is an example:
Example: Overuse of antibiotics increases the chance of bacteria developing antibiotic resistance.
Source: http://emerald.tufts.edu/med/apua/about_issue/about_antibioticres.shtml
Building on a Theme Lesson Planner
Science Resources from the World Wide Web

Annenberg Foundation. Great science materials and courses from *The Habitable Planet* to *Force and Motion*. Courses, lesson plans, and interactives will keep students engaged in science. http://www.learner.org/resources/discipline-science.html

BBC Science. From space to the human body to, this interactive site allows learners to discover many different facets of science. http://www.bbc.co.uk/sn/

Cells Alive. This site can be used by teachers and students. Lots of great interactivity and resources on the basics of cells. http://www.cellsalive.com/toc.htm

Classroom Aid. Resources for teaching science content. http://classroom-aid.com/educational-resources/science/

Discovery Education. The website provides lesson plans on earth and space science. http://www.discoveryeducation.com/search/page/-/-/lesson-plan/earth%20science/index.cfm

eSkeletons. A great website that provides information and activities. http://www.eskeletons.org/

Earth Exploration Toolkit. Developed by teams of scientists and educators, the *Earth Exploration Toolbook* (EET) is a collection of online Earth system science activities. http://serc.carleton.edu/eet/index.html

Environmental Protection Agency. http://www.epa.gov/students/lesson-plans-teacher-guides-and-online-resources-educators

Exploratorium Online. The site contains over 15,000 articles and displays including interactivity regarding science. http://www.exploratorium.edu/

How Science Work. An app that provides lots of science information from the California Academy of Science. https://itunes.apple.com/us/course/how-science-works/id689052881

Interactive Websites for Teaching Science. Just click on one of the topics and explore the myriad of resources on the World Wide Web. http://interactivesites.weebly.com/science.html

Khan Academy. Lots of videos on graphics, as well as science content. https://www.khanacademy.org/

Mythbusters. From the Discovery Channel comes great videos that use the scientific method to explore different questions in science. http://www.discovery.com/tv-shows/mythbusters/

NEWSELA. This website is an innovative way to build reading comprehension with nonfiction through daily news articles. https://newsela.com/

PhETSimulations. University of Colorado. Dozens of simulations, as well as activities and lab experiences. https://phet.colorado.edu/

Science News for Student. The latest in science news, written for everyone. Shorter news pieces (typically 350 to 800 words), written at about 6.0 – 9.0. https://www.scienecenewsforstudents.org/

Share My Lesson. Lesson plans and resources in all different areas of science plus more. https://sharemylesson.com/

Study Jams. Short videos on such things as the scientific method and scientific theory, as well as content areas in science. http://studyjams.scholastic.com/studyjams/jams/science/scientific-inquiry/scientific-methods.htm

Teachers Try Science. This site provides free and engaging lessons, along with teaching strategies and resources. http://www.tryscience.org/

Ted Ed Lessons. This website has great videos and lesson plans in all areas of science. http://ed.ted.com/lessons

The Physics Classroom. Information and activities in different areas of physics. http://www.physicsclassroom.com/

Understanding Science. A fun, free resource that aims to accurately communicate what science is and how it really works. http://undsci.berkeley.edu/

Virtual Microscope. Don’t have a microscope in the classroom. Try this virtual one! http://www1.udel.edu/biology/ketcham/microscope/scope.html

Stay in Touch!

- GED Testing Service® – www.GEDtestingservice.com
- Twitter at @GEDTesting® – https://twitter.com/gedtesting
- GED® Facebook – https://www.facebook.com/GEDTesting
- YouTube Channel – https://www.youtube.com/user/GEDTestingService